|
|
原帖由 psbs-shj 于 2007-12-21 11:42 发表 
2 ~( k: M3 q2 U" v& ]几天过去了,谁给传个原理,画图的步骤来呀
7 N$ H- I* ]$ Z, k* t. z3 B/ f$ m8 M
$ Q l! Y9 @! t( `其实根据前面的提示,应该能自己想出来吧,- z+ V) V6 C3 L5 [3 K5 i6 B
我的思路:提示--阿氏圆
1 l) u- }4 U: ~$ Q/ A) f8 p6 O0 j% D! r4 C5 |5 Q8 t+ L( J
这个题中有角平分线,首先想到角平分线定理,如图: AB:AC=BD: DC,那么就找这个比例的阿氏圆,即动点到定点B、C的距离比为AB:AC=BD: DC,根据阿氏圆的性质---阿氏圆是BC内外定比等分点为直径的圆,则阿氏圆的圆心就在BC(BE9 W: X" n% |9 H0 P$ a1 M
)上,并且AD是这个阿氏圆的一条弦,因为EF垂直平分弦AD,则阿氏圆的圆心必在EF上,所以E点就是阿氏圆的圆心了。+ `" k# E5 N% p7 u7 b
& s7 B. T, w5 `7 M- }上面的分析现在可以倒过来做,按照zzzzzzzzzzz版主的公式求出DC,然后做画出阿氏圆,而且根据阿氏圆的性质,其实是有无数个A点的,A点就是那个动点,A只要在圆周上移动,则永远有AB:AC=BD: DC,并且AD永远是角平分线,而且EF永远是AD的垂直平分线.............. x; y# `0 I* U9 Y, N
4 s1 t- o2 O# i8 E$ V[ 本帖最后由 truezx 于 2007-12-21 12:54 编辑 ] |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
x
|